4.4 Article

Construction and characterization of nisin-controlled expression vectors for use in Lactobacillus reuteri

Journal

BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY
Volume 70, Issue 4, Pages 757-767

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1271/bbb.70.757

Keywords

Lactobacillus reuteri; nisin-controlled expression system; signal peptide; expression-secretion vector; alpha-amylase

Ask authors/readers for more resources

The Nisin-controlled gene expression (NICE) system, which was discovered in Lactococcus lactis, was adapted to Lactobacillus reuteri by ligating nisA promoter (PnisA) and nisRK DNA fragments into the Escherichia coli-Lb. reuteri shuttle vector pSTE32. This chimerical plasmid (pNICE) was capable of expressing the heterologous amylase gene (amyL) under nisin induction., Optimization of induction factors for this Lb. reuteri/pNICE system, including nisin concentration (viz. 50 ng/ml), growth phase of culture at which nisin be added (viz. at the early exponential phase), and the best time for analyzing the gene product after inoculation (viz. at the 3rd h), allowed the amylase product to be expressed in high amounts, constituting up to about 18% of the total intracellular protein. Furthermore, the signal peptide (SP) of amyL gene (SPamyL) from Bacillus licheniformis was ligated to the downstream of PnisA in pNICE, upgrading this vector to a NICE-secretion (NIES) level, which was then designated pNIES (Sec(+), secretion positive). Characterization of pNIES using an amyL-SP Delta gene (amyL gene lacking its SP) as a reporter revealed the 3rd h after induction as the secretion peak of this system, at which the secretion efficiency and the amount of alpha-amylase being secreted into the culture supernatant were estimated to reach 77.6% and 27.75 mg/l. Expression and secretion of AmyL products by pNIES in Lb. reuteri was also confirmed by SDS-PAGE and immunoblotting analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available