4.5 Review

Vascular physiology of a Ca2+ mobilizing second messenger -: cyclic ADP-ribose

Journal

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
Volume 10, Issue 2, Pages 407-422

Publisher

WILEY
DOI: 10.1111/j.1582-4934.2006.tb00408.x

Keywords

calcium mobilization; signal transduction; arterial myocytes; circulation; second messenger

Funding

  1. NHLBI NIH HHS [HL057244, HL075316] Funding Source: Medline
  2. NIDDK NIH HHS [DK054927] Funding Source: Medline

Ask authors/readers for more resources

Cyclic ADP-ribose (cADPR) is a novel Ca2+ mobilizing second messenger, which is capable of inducing Ca2+ release from the sarcoplasmic reticulum (SR) via activation of ryanodine receptors (RyR) in vascular cells. This signaling nucleotide has also been reported to participate in generation or modulation of intracellular Ca2+ sparks, Ca2+ waves or oscillations, Ca2+-induced Ca2+ release (CICR) and spontaneous transient outward currents (STOCs) in vascular smooth muscle cells (VSMCs). With respect to the role of cADPR-mediated signaling in mediation of vascular responses to different stimuli, there is accumulating evidence showing that cADPR is importantly involved in the Ca2+ response of vascular endothelial cells (ECs) and VSMCs to various chemical factors such as vasoactive agonists acetylcholine, oxotremorine, endothelin, and physical stimuli such as stretch, electrical depolarization and sheer stress. This cADPR-RyR-mediated Ca2+ signaling is now recognized as a fundamental mechanism regulating vascular function. Here we reviewed the literature regarding this cADPR signaling pathway in vascular cells with a major focus on the production of cADPR and its physiological roles in the control of vascular tone and vasomotor response. We also summarized some publish results that unveil the underlying mechanisms mediating the actions of cADPR in vascular cells. Given the importance of Ca2+ in the regulation of vascular function, the results summarized in this brief review will provide new insights into vascular physiology and circulatory regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available