4.7 Article

Stacking fault structure in shear-induced colloidal crystallization

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 124, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2178784

Keywords

-

Ask authors/readers for more resources

We report measurements of the spatial distribution of stacking faults in colloidal crystals formed by means of an oscillatory shear field at a particle volume fraction of 52% in a system where the pair potential interactions are mildly repulsive. Stacking faults are directly visualized via confocal laser scanning microscopy. Consistent with previous scattering studies, shear orders the initially amorphous colloids into close-packed planes parallel to the shearing surface. Upon increasing the strain amplitude, the close-packed direction of the (111) crystal plane shifts from an orientation parallel to the vorticity direction to parallel the flow direction. The quality of the layer ordering, as characterized by the mean stacking parameter, decreases with strain amplitude. In addition, we directly observe the three-dimensional structure of stacking faults in sheared crystals. We observe and quantify spatial heterogeneity in the stacking fault arrangement in both the flow-vorticity plane and the gradient direction, particularly at high strain amplitudes (gamma >= 3). At these conditions, layer ordering persists in the flow-vorticity plane only over scales of similar to 5-10 particle diameters. This heterogeneity is one component of the random layer ordering deduced from previous scattering studies. In addition, in the gradient direction, the stacking registry shows that crystals with intermediate global mean stacking probability are comprised of short sequences of face-centered cubic and hexagonal close-packed layers with a stacking that includes a component that is nonrandom and alternating in character. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available