4.4 Article

Detecting the cosmic gravitational wave background with the Big Bang Observer

Journal

CLASSICAL AND QUANTUM GRAVITY
Volume 23, Issue 7, Pages 2435-2446

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0264-9381/23/7/014

Keywords

-

Ask authors/readers for more resources

The detection of the cosmic microwave background radiation (CMB) was one of the most important cosmological discoveries of the last century. With the development of interferometric gravitational wave detectors, we may be in a position to detect the gravitational equivalent of the CMB; in this century. The cosmic gravitational background (CGB) is likely to be isotropic and stochastic, making it difficult to distinguish from instrument noise. The contribution from the CGB can be isolated by cross-correlating the signals from two or more independent detectors. Here we extend previous studies that considered the cross -correlation of two Michelson channels by calculating the optimal signal-to-noise ratio that can be achieved by combining the full set of interferometry variables that are available with a six link triangular interferometer. In contrast to the two channel case, we find that the relative orientation of a pair of coplanar detectors does not affect the signal-to-noise ratio. We apply our results to the detector design described in the Big Bang Observer (BBO) mission concept study and find that the BBO could detect a background with Omega(gw) > 2.2 x 10(-17).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available