4.7 Article

Order-parameter-based Monte Carlo simulation of crystallization

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 124, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2178324

Keywords

-

Ask authors/readers for more resources

A Monte Carlo simulation method is presented for simulation of phase transitions, with emphasis on the study of crystallization. The method relies on a random walk in order parameter Phi(q(N)) space to calculate a free energy profile between the two coexisting phases. The energy and volume data generated over the course of the simulation are subsequently reweighed to identify the precise conditions for phase coexistence. The usefulness of the method is demonstrated in the context of crystallization of a purely repulsive Lennard-Jones system. A systematic analysis of precritical and critical nuclei as a function of supercooling reveals a gradual change from a bcc to a fcc structure inside the crystalline nucleus as it grows at large degrees of supercooling. The method is generally applicable and is expected to find applications in systems for which two or more coexisting phases can be distinguished through one or more order parameters. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available