4.8 Article

Experimental evidence for interspecific directional selection on moth pheromone communication

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0508609103

Keywords

communication interference; Helicithis subflexa; Heliothis virescens; sexual communication; speciation

Ask authors/readers for more resources

The chemical composition of the sexual communication signals of female moths is thought to be under strong stabilizing selection, because females that produce atypical pheromone blends suffer lower success in finding mates. This intraspecific selection pressure cannot explain the high diversity of moth pheromone blends found in nature. We conducted experiments to determine whether communication interference from males of closely related species could exert strong enough directional selection to cause evolution of these signals. Attraction and mating success of Heliothis subflexa (Hs) females with a normal quantitative trait locus for production of acetate pheromone components (norm-OAc) were compared with Hs females with an introgressed quantitative trait locus from Heliothis virescens (Hv) that dramatically decreased the amount of acetate esters in their pheromone glands (low-ClAc). In field experiments with natural Hv and Hs populations, 10 times more Hv males were captured in traps baited with live low-OAc Hs females than in traps with norm-ClAc Hs females. This pattern was confirmed in mate-choice assays in cages. Hybrids resulting from Hv-Hs matings have effectively zero fitness in the field. Combining our results with the extensive data set gathered in the past 40 years on the reproductive biology of Hv, we can quantitatively estimate that the directional selection exerted by Hv males on Hs females to produce relatively high amounts (> 5%) of acetates can range from 0.135 to 0.231. Such intense interspecific selection may counteract intraspecific stabilizing selection that impedes evolutionary changes in pheromone blends and could lead to diversification of sexual signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available