4.5 Article

Distinct pattern of lung gene expression in the Cftr-KO mice developing spontaneous lung disease compared with their littermate controls

Journal

PHYSIOLOGICAL GENOMICS
Volume 25, Issue 2, Pages 179-193

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00206.2005

Keywords

microarray; cystic fibrosis; Cftr knockout; mouse model

Ask authors/readers for more resources

Cystic fibrosis (CF) is caused by a defect in the CF transmembrane conductance regulator (CFTR) protein that functions as a chloride channel. Dysfunction of the CFTR protein results in salty sweat, pancreatic insufficiency, intestinal obstruction, male infertility, and severe pulmonary disease. Most of the morbidity and mortality of CF patients results from pulmonary complications. Differences in susceptibility to bacterial infection and variable degree of CF lung disease among CF patients remain unexplained. Many phenotypic expressions of the disease do not directly correlate with the type of mutation in the Cftr gene. Using a unique CF mouse model that mimics aspects of human CF lung disease, we analyzed the differential gene expression pattern between the normal lungs of wild-type mice (WT) and the affected lungs of CFTR knockout mice (KO). Using microarray analysis followed by quantitation of candidate gene mRNA and protein expression, we identified many interesting genes involved in the development of CF lung disease in mice. These findings point to distinct mechanisms of gene expression regulation between mice with CF and control mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available