4.7 Article

Carbon monoxide, oxidative stress, and mitochondrial permeability pore transition

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 40, Issue 8, Pages 1332-1339

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2005.11.020

Keywords

mitochondria; permeability pore; hypoxia; apoptosis; ROS; nitric oxide; free radical

Funding

  1. NHLBI NIH HHS [HL4-2444-13] Funding Source: Medline

Ask authors/readers for more resources

The cellular effects of carbon monoxide (CO) are produced primarily by CO binding to iron or other transition metals, which may also promote prooxidant activities of the more reactive gases, oxygen and nitric oxide. We tested the hypothesis that prooxidant effects of CO deregulate the calcium-dependent mitochondrial pore transition (MPT), which disrupts membrane potential and releases apoptogenic proteins. Rats were exposed to either CO (50 ppm) or hypobaric hypoxia (HH) for 1, 3, or 7 days, and liver mitochondria harvested to study protein expression and sensitivity to MPT by calcium and oxidants. Both exposures induced hypoxia-sensitive protein expression: hypoxia-inducible factor 1 alpha (HIF-1 alpha), heme oxygenase-1 (HO-1), and manganese SOD (SOD2), but SOD2 induction was greater by CO than by HH, especially at 7 days. Relative to HH, CO also caused significant early mitochondrial oxidative and nitrosative stress shown by decreases in GSH/GSSG and increases in protein 3-nitrotyrosine (3-NT) and protein mixed disulfide formation. This altered MPT sensitivity to calcium through an effect on the S-site, causing loss of pore protection by adenine nucleotides. By 7 days, despite continued CO, nitrosative stress decreased and adenine nucleotide protection was restored to preexposure levels. This is the first evidence of functional mitochondrial pore stress caused by CO independently of its hypoxic effect, as well as a compensatory response exemplifying a mitochondrial phenotype shift. The implications are that cellular CO can activate or deactivate mitochondria for initiation of apoptosis in vivo. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available