4.8 Article

Facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles

Journal

CHEMISTRY OF MATERIALS
Volume 18, Issue 8, Pages 2030-2037

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm052360x

Keywords

-

Ask authors/readers for more resources

CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles were prepared by the polyol method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV-vis absorption spectra, photoluminescence (PL) spectra, and lifetimes. The results of XRD indicate that the obtained CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles crystallized well at 200 degrees C in diethylene glycol (DEG) with a hexagonal structure. The TEM images illustrate that the CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 7 nm. The growth of the LaF3 shell around the CeF3:Tb3+ core nanoparticles resulted in an increase of the average size (11 nm) of the nanopaticles as well as in a broadening of their size distribution. These nanocrystals can be well-dispersed in ethanol to form clear colloidal solutions. The colloidal solutions of CeF3 and CeF3:Tb3+ show the characteristic emission of Ce3+ 5d-4f (320 nm) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 542 nm as the strongest one) transitions, respectively. The emission intensity and lifetime of the CeF3:Tb3+/LaF3 (core/shell) nanoparticles increased with respect to those of CeF3:Tb3+ core particles. This indicates that a significant amount of nonradiative centers existing on the surface of CeF3:Tb3+ nanoparticles can be eliminated by the shielding effect of LaF3 shells. Finally, the energy transfer from Ce3+ to Tb3+ was investigated in CeF3:Tb3+ nanoparticles in detail.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available