4.7 Article

Numerical analysis of standing accretion shock instability with neutrino heating in supernova cores

Journal

ASTROPHYSICAL JOURNAL
Volume 641, Issue 2, Pages 1018-1028

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/500554

Keywords

hydrodynamics; instabilities; neutrinos; supernovae : general

Ask authors/readers for more resources

We have numerically studied the instability of the spherically symmetric standing accretion shock wave against nonspherical perturbations. We have in mind the application to collapse-driven supernovae in the postbounce phase, where the prompt shock wave generated by core bounce is commonly stalled. We take an experimental standpoint in this paper. Using spherically symmetric, completely steady, shocked accretion flows as unperturbed states, we have clearly observed both the linear growth and the subsequent nonlinear saturation of the instability. In so doing, we have employed a realistic equation of state, together with heating and cooling via neutrino reactions with nucleons. We have performed a mode analysis based on the spherical harmonics decomposition and found that the modes with l 1; 2 are dominant not only in the linear regime but also after nonlinear couplings generate various modes and saturation occurs. By varying the neutrino luminosity, we have constructed unperturbed states both with and without a negative entropy gradient. We have found that in both cases the growth of the instability is similar, suggesting that convection does not play a dominant role, which also appears to be supported by the recent linear analysis of the convection in accretion flows by Foglizzo et al. The oscillation period of the unstable l 1 mode is found to fit better with the advection time rather than with the sound crossing time. Whatever the cause may be, the instability favors a shock revival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available