4.5 Article

Metastable γ-MnS hierarchical architectures:: Synthesis, characterization, and growth mechanism

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 16, Pages 8284-8288

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp060351l

Keywords

-

Ask authors/readers for more resources

Preparation of shape-controlled metastable gamma-MnS semiconductor nanocrystals has been achieved on a large scale through a simple solvothermal method in the presence of PVP. The key strategy is the use of sulfur powder as sulfur source in ethylene glycol (EG) solvent that also acted as a weak reducing agent. Reaction parameters such as reaction time and temperature are found to be important in controlling various hierarchical architectures, such as homogeneous semi-hollow core-shell, hollow nanospheres, and nanowires. Transmission electron microscopy observations indicate that these hierarchical architectures are formed mainly via Ostwald ripening. The optical absorption measurements reveal that these novel architectures exhibit remarkable shift of absorption peak during the course of structural compaction and grain growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available