4.7 Article

Vibrational structure and methyl C-H dynamics in propyne

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 124, Issue 16, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2185636

Keywords

-

Ask authors/readers for more resources

Our previous study [J. Chem. Phys. 122, 224316 (2005)] presented the photoacoustic and action spectra of the V=2, 3, 4, and 5 manifolds of the C-H methyl stretching vibrations of propyne and their analysis in terms of a simplified joint local mode/normal mode model. In the current paper the C-H transition intensities were calculated using B3LYP/6-311++G(d,p) level of theory to obtain the dipole moment functions. The diagonalization of the vibrational Hamiltonian revealed new model parameters obtained by least square fitting of the eigenvalues to the action spectra band origins, while examining the correspondence between the calculated intensities and simulated band areas. The newly derived parameters predict well the band positions and the observed intensities, allowing new assignment of the features. The derived Hamiltonian was also used to obtain the overall temporal behavior of the C-H stretches as a result of the Fermi couplings and interactions with the bath states. These results indicate that any specificity attained by suitable excitation of the methyl C-H stretches is lost on picosecond time scale, primarily due to strong interactions with doorway states in the lower overtone and coupling with bath states in the region of the higher ones. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available