4.7 Article Proceedings Paper

Selective ablation of thin films with short and ultrashort laser pulses

Journal

APPLIED SURFACE SCIENCE
Volume 252, Issue 13, Pages 4814-4818

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2005.06.057

Keywords

laser ablation; micromachining; femtosecond laser; solar cells

Ask authors/readers for more resources

Micromachining of CuInSe2 (CIS)-based photovoltaic devices with short and ultrashort laser pulses has been investigated. Therefore, ablation thresholds and ablation rates of ZnO, Mo and CuInSe2 thin films have been measured for irradiation with nanosecond laser pulses of ultraviolet and visible light and subpicosecond laser pulses of a Ti:sapphire laser. The experimental results were compared to the theoretical evaluation of the samples heat regime. In addition, the cells photo-electrical properties were measured before and after laser machining. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses were employed to characterise the laser-induced ablation channels. Using nanosecond laser pulses, two phenomena were found to limit the laser-machining process. Residues of Mo that were projected onto the walls of the ablation channel and the metallization of the CuInSe2 semiconductor close to the channel lead to a shunt. The latter causes the decrease of the photovoltaic efficiency. As a consequence of these limiting effects, only subpicosecond laser pulses allowed the selective or complete ablation of the thin layers without a relevant change of the photo-electrical properties. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available