4.7 Article

Spatial analysis of fatal and injury crashes in Pennsylvania

Journal

ACCIDENT ANALYSIS AND PREVENTION
Volume 38, Issue 3, Pages 618-625

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.aap.2005.12.006

Keywords

full Bayes hierarchical model; spatial correlation; negative binomial model; crash risk; weather conditions and crash risk

Ask authors/readers for more resources

Using injury and fatal crash data for Pennsylvania for 1996-2000, full Bayes (FB) hierarchical models (with spatial and temporal effects and space-time interactions) are compared to traditional negative binomial (NB) estimates of annual county-level crash frequency. Covariates include socio-demographics, weather conditions, transportation infrastructure and amount of travel. 1713 hierarchical models are generally consistent with the NB estimates. Counties with a higher percentage of the population under poverty level, higher percentage of their population in age groups 0-14, 15-24, and over 64 and those with increased road mileage and road density have significantly increased crash risk. Total precipitation is significant and positive in the NB models, but not significant with FB. Spatial correlation, time trend, and space-time interactions are significant in the FB injury crash models. County-level FB models reveal the existence of spatial correlation in crash data and provide a mechanism to quantify, and reduce the effect of, this correlation. Addressing spatial correlation is likely to be even more important in road segment and intersection-level crash models, where spatial correlation is likely to be even more pronounced. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available