4.5 Article

Identification of Bacillus subtilis σW-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli

Journal

MOLECULAR MICROBIOLOGY
Volume 60, Issue 3, Pages 765-782

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2006.05131.x

Keywords

-

Funding

  1. NIGMS NIH HHS [GM047446, R01 GM047446] Funding Source: Medline

Ask authors/readers for more resources

Bacillus subtilis produces many antibiotics of varying structures and specificity. Here we identify a prominent role for sigma(W), an extracytoplasmic function (ECF) sigma factor, in providing intrinsic resistance to antimicrobial compounds produced by other Bacilli. By using a panel of B. subtilis mutants disrupted for each of the 30 known sigma(W)-dependent operons we identified resistance genes for at least three different antimicrobial compounds. The ydbST and fosB genes contribute to resistance to antimicrobial compound(s) produced by B. amyloliquefaciens FZB42, the yqeZ-yqfAB operon provides resistance to the SP beta prophage-encoded bacteriocin sublancin, and the yknWXYZ operon and yfhL provide resistance to the antimicrobial peptide SdpC. YfhL encodes a paralogue of SdpI, a membrane protein that provides immunity to SdpC. In competition experiments, we identify sigma(W) as a key factor in allowing B. subtilis to resist antibiotic killing and encroachment by competing strains. Together with the previous observation that sigma(W) provides inducible resistance against the Streptomyces antibiotic fosfomycin, these studies support the notion that sigma(W) controls an antibiosis regulon important in the microbial ecology of soil bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available