4.5 Article Proceedings Paper

Sensing properties of buffered and not buffered carbon nanotubes by fibre optic and acoustic sensors

Journal

MEASUREMENT SCIENCE AND TECHNOLOGY
Volume 17, Issue 5, Pages 1220-1228

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/17/5/S46

Keywords

carbon nanotubes; optical fibre VOCs sensors; QCM acoustic VOCs sensor

Ask authors/readers for more resources

Single-walled carbon nanotubes (SWCNTs) are advanced nanostructured materials with promising sensing properties in terms of sensitivity, low sub-ppm limit of detection, on-line and real-time vapour detection, at room temperature. This work is focused on the study of the sensitivity to aromatic volatile organic compounds (VOCs) of standard silica optical fibre (SOF) and quartz crystal microbalance (QCM) sensors incorporating Langmuir-Blodgett multilayers of SWCNTs. Multilayers of SWCNTs with different thicknesses and successfully transferred directly onto the sensors' surface were tested for the detection of toluene and xylene at room temperature and compared with the sensing performances of SWCNT multilayers buffered by a linker multilayer of cadmium arachidate. The optical and acoustic sensors' principle of operation relies respectively on the complex dielectric function and mass change induced by target analyte molecules adsorbed into the sensitive nanomaterials. A time division multiplexing approach for both optical and acoustic chemical sensors has been exploited in order to simultaneously test up to eight SOF and six QCM sensors. The results obtained demonstrate that the sensors based on SWCNTs provide high sensitivity, very low limits of VOC detection and fast response, at room temperature, with a clear dependence of the sensors' sensitivities on the nanomaterial thickness. Furthermore, higher sensitivity was observed in the case of optical fibre sensors exposed to xylene; in addition, behaviour with the opposite sign in the optical response occured between buffered and not buffered SWCNTs overlayers. Also, effects of humidity have been investigated in the case of optical fibre sensors demonstrating a linear dependence of the response at a constant temperature of 28 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available