4.6 Article

Transient terahertz conductivity in photoexcited silicon nanocrystal films

Journal

PHYSICAL REVIEW B
Volume 73, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.193311

Keywords

-

Ask authors/readers for more resources

Time-resolved terahertz spectroscopy is used to probe ultrafast carrier dynamics and terahertz conductivity in photoexcited thin films of silicon nanocrystals, polynanocrystalline silicon, and epitaxial silicon-on-sapphire. We show that a Drude-Smith model provides an excellent fit to the observed transient terahertz conductivity in all of our samples, revealing a transition from a Drude-like response with low carrier backscatter in bulk silicon-on-sapphire to a non-Drude-like, localized behavior with high carrier backscatter in the silicon nanocrystal films. Evidence for long-range conduction between nanocrystals is observed, and we show that the photoconductive lifetime of the silicon nanocrystals is dominated by trapping at Si/SiO2 interface states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available