4.5 Article

Direct measurement of fiber bridging in notched glass-ceramic-matrix composites

Journal

JOURNAL OF MATERIALS RESEARCH
Volume 21, Issue 5, Pages 1150-1160

Publisher

MATERIALS RESEARCH SOCIETY
DOI: 10.1557/JMR.2006.0132

Keywords

-

Ask authors/readers for more resources

A novel, high-resolution remote Raman microscope was used for the direct in situ assessment of deformation on bridging fibers in a double-edge-notched SiC-Nicalon reinforced ceramic-glass matrix composite at various stages of monotonic tensile loading. The effect of notch length on the bridging strain profiles obtained by individually probing a large number of fibers across the bridged ligament of the composite was investigated. Bridging strain measurements in the microscale are used to identify the role and sequence of the failure micromechanisms developing within the bridging zone and are compared with their macromechanically derived counterparts. The difference of 25% in failure strain between the as-received fiber and the maximum value obtained on composite-fibers through laser Raman microscopy (LRM), is attributed to the different patterns of fiber failure in composites as compared to the techniques used for fibers characterization such as monofilament and bundle testing in air. This article demonstrates how the LRM-strain data can be utilized to obtain a direct, microscale measure of the interfacial-shear strength of the composite. The obtained interfacial shear strength (ISS) value of 7 MPa compares well with the macromechanically predicted value and offers a much higher precision compared to other experimental techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available