4.3 Article

Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00738.2005

Keywords

dietary sodium; plasma volume; exercise

Categories

Ask authors/readers for more resources

Patients with untreated heart failure (HF) exhibit a blunted hemodynamic and neuroendocrine response to a high sodium intake, leading to excessive sodium and water retention. However, it is not known whether this is the case for patients with compensated HF receiving angiotensin-converting enzyme inhibitors and beta-adrenoreceptor blockers. Therefore, we determined the hemodynamic and neuroendocrine responses to 1 wk of a low-sodium diet (70 mmol/day) and 1 wk of a high-sodium diet (250 mmol/day) in 12 HF patients and 12 age-matched controls in a randomized, balanced fashion. During steady-state conditions, hemodynamic and neuroendocrine examinations were performed at rest and during bicycle exercise. In seated HF patients, high sodium intake increased body weight (1.6 +/- 0.4%), plasma volume (9 +/- 2%), cardiac index (14 +/- 6%), and stroke volume index (21 +/- 5%), whereas mean arterial pressure was unchanged. Therefore, the total peripheral resistance decreased by 10 +/- 4%. Similar hemodynamic changes were observed during an incremental bicycle exercise test. Plasma concentrations of angiotensin II and norepinephrine were suppressed, whereas plasma pro-B-type natriuretic peptide remained unchanged. In conclusion, high sodium intake was tolerated without any excessive sodium and water retention in medically treated patients with compensated HF. The observation that high sodium intake improves cardiac performance, induces peripheral vasodilatation, and suppresses the release of vasoconstrictor hormones does not support the advice for HF patients to restrict dietary sodium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available