4.7 Article

Atmosphere, interior, and evolution of the metal-rich transiting planet HD 149026b

Journal

ASTROPHYSICAL JOURNAL
Volume 642, Issue 1, Pages 495-504

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/500920

Keywords

binaries : eclipsing; planetary systems; radiative transfer; stars : individual (HD 149026, HD 189733)

Ask authors/readers for more resources

We investigate the atmosphere and interior of the new transiting planet HD 149026b, which appears to be very rich in heavy elements. We first compute model atmospheres at metallicities ranging from solar to 10 times solar and show how for cases with high metallicity or inefficient redistribution of energy from the dayside, the planet may develop a hot stratosphere due to absorption of stellar flux by TiO and VO. The spectra predicted by these models are very different than cooler atmosphere models without stratospheres. The spectral effects are potentially detectable with the Spitzer Space Telescope. In addition, the models with hot stratospheres lead to a large limb brightening, rather than darkening. We compare the atmosphere of HD 149026b to other well-known transiting planets, including the recently discovered HD 189733b, which we show has a planet-to-star flux ratio twice that of HD 209458 and TrES-1. The methane abundance in the atmosphere of HD 189733b is a sensitive indicator of atmospheric temperature and metallicity and can be constrained with Spitzer IRAC observations. We then turn to interior studies of HD 149026b and use a grid of self-consistent model atmospheres and high-pressure equations of state for all components to compute thermal evolution models of the planet. We estimate that the mass of heavy elements within the planet is in the range of 60-93 M(circle plus). Finally, we discuss trends in the radii of transiting planets with metallicity in light of this new member of the class.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available