4.8 Article

In silico pharmacogenetics of warfarin metabolism

Journal

NATURE BIOTECHNOLOGY
Volume 24, Issue 5, Pages 531-536

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt1195

Keywords

-

Funding

  1. NIGMS NIH HHS [1 R01 GM068885-01A1, R01 GM068885] Funding Source: Medline

Ask authors/readers for more resources

Pharmacogenetic approaches can be instrumental for predicting individual differences in response to a therapeutic intervention. Here we used a recently developed murine haplotype-based computational method to identify a genetic factor regulating the metabolism of warfarin, a commonly prescribed anticoagulant with a narrow therapeutic index and a large variation in individual dosing. After quantification of warfarin and nine of its metabolites in plasma from 13 inbred mouse strains, we correlated strain-specific differences in 7-hydroxywarfarin accumulation with genetic variation within a chromosomal region encoding cytochrome P450 2C (Cyp2c) enzymes. This computational prediction was experimentally confirmed by showing that the rate-limiting step in biotransformation of warfarin to its 7-hydroxylated metabolite was inhibited by tolbutamide, a Cyp2c isoform-specific substrate, and that this transformation was mediated by expressed recombinant Cyp2c29. We show that genetic variants responsible for interindividual pharmacokinetic differences in drug metabolism can be identified by computational genetic analysis in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available