4.2 Editorial Material

Allometry, antilog transformations, and the perils of prediction on the original scale

Journal

PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY
Volume 79, Issue 3, Pages 665-674

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/502814

Keywords

-

Ask authors/readers for more resources

Biologists often use allometric equations that take the form of power functions (e. g., Y = aM(b), where M stands for mass and a and b are empirically fitted constants). Typically, these allometric equations are fitted by taking the antilog of log-log regressions. Predictions from these allometric equations are biased, and the bias my be appreciable. Methods for making predictions that correct for the bias are available, but they have rarely, if ever, been used by ecological and evolutionary physiologists. Just as physiologists would not use an instrument that was not properly calibrated, they should not use allometric equations to make predictions unless they account for the bias of those predictions. We analyzed 20 interspecific and 10 intraspecific data sets. We compared predictions from standard allometric equations with those from several alternative methods. Our analyses suggest that the bias of predictions from interspecific data sets may be substantial. For the intraspecific data sets we analyzed, the bias was likely to be small. Biologists, including ecological and evolutionary physiologists, should exercise care when using allometric equations to make predictions, particularly given that methods to adjust for bias are easily implemented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available