4.7 Article

p38 mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis or cardiomyogenesis

Journal

STEM CELLS
Volume 24, Issue 5, Pages 1399-1406

Publisher

WILEY
DOI: 10.1634/stemcells.2005-0398

Keywords

embryonic stem cells; p38 mitogen-activated protein kinase; neurogenesis; cardiomyogenesis

Ask authors/readers for more resources

Mouse embryonic stem (ES) cells can be differentiated, in vitro into a variety of cell types including cardiac cells and neurons. This process is strictly controlled by the potent morphogen retinoic acid (RA). At a concentration of 10(-7) M, RA induces ES cell differentiation into neurons and, conversely, inhibits cardiomyogenesis. We found that p38 mitogen-activated protein kinase (p38MAPK) activity peaked spontaneously, between day 3 and day 5, during ES cell differentiation and that RA completely inhibited this peak of activity. In contrast to wild-type cells, which required RA treatment, p38 alpha(-/-) ES cells differentiated spontaneously into neurons and did not form cardiomyocytes. Moreover, inhibition of the peak of p38MAPK activity by a specific inhibitor, PD169316, committed ES cells into the neuronal lineage and blocked cardiomyogenesis. By genetic and biochemical approaches, we demonstrate that, in two different ES cell lines, the control of p38MAPK activity constitutes an early switch, committing ES cells into either neurogenesis (p38 off) or cardiomyogenesis (p38 on).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available