4.7 Article

Dietary fish oil alters cardiomyocyte Ca2+ dynamics and antioxidant status

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 40, Issue 9, Pages 1592-1602

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2005.12.026

Keywords

fish oil; reactive oxygen species; Ca2+; superoxide dismutase; catalase; glutathione peroxidase; free radicals

Ask authors/readers for more resources

The n-3 polyunsaturated fatty acids (PUFAs) found in fish oil (FO) have been shown to protect against reperfusion arrhythmias, a manifestation of reperfusion injury, which is believed to be induced by the formation of reactive oxygen species (ROS) and intracellular calcium (Ca2+) overload. Adult rats fed a diet supplemented with 10% FO had a higher proportion of myocardial n-3 PUFAs and increased expression of antioxidant enzymes compared with the saturated fat (SF)-supplemented group. Addition of hydrogen peroxide (H2O2) to cardiomyocytes isolated from rats in the SF-supplemented group increased the proportions of cardiomyocytes contracting in an asynchronous manner, increased the rate of Ca2+ influx, and increased the diastolic and systolic [Ca2+](i) compared with the FO group. H2O2 exposure increased the membrane fluidity of cardiomyocytes from the FO group. These results demonstrate that dietary FO supplementation is associated with a reduction in the susceptibility of myocytes to ROS-induced injury and this may be related to membrane incorporation of n-3 PUFAs, increased antioxidant defenses, changes in cardiomyocyte membrane fluidity, and the ability to prevent rises in cellular Ca2+ in response to ROS. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available