4.7 Article

Forecasting site-specific leaf wetness duration for input to disease-warning systems

Journal

PLANT DISEASE
Volume 90, Issue 5, Pages 650-656

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PD-90-0650

Keywords

melon; tomato

Categories

Ask authors/readers for more resources

Empirical models based on classification and regression tree analysis (CART model) or fuzzy logic (FL model) were used to forecast leaf wetness duration (LWD) 24 h into the future, using site-specific weather data estimates as inputs. Forecasted LWD and air temperature then were used as inputs to simulate performance of the Melcast and TOM-CAST disease-warning systems. Overall, the CART and FL models underpredicted LWD with a mean error (ME) of 2.3 and 3.9 h day(-1), respectively. The CFL model, a corrected version of the FL model using a weight value, reduced ME in LWD forecasts to -1.1 h day(-1). In the Melcast and TOM-CAST simulations, the CART and CFL models predicted timing of occurrence of action thresholds similarly to thresholds derived from on-site weather data measurements. Both models forecasted the exact spray dates for approximately 45% of advisories derived from measurements. When hindcast and forecast estimates derived from site-specific estimates provided by SkyBit Inc. were used as inputs, the CART and CFL models forecasted spray advisories within 3 days for approximately 70% of simulation periods for the Melcast and TOM-CAST disease-warning systems. The results demonstrate that these models substantially enhance the accuracy of commercial site-specific LWD estimates and, therefore, can enhance performance of disease-warning systems using LWD as an input.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available