4.7 Article

Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation

Journal

PHYSICAL REVIEW E
Volume 73, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.73.056611

Keywords

-

Ask authors/readers for more resources

We present a large family of exact solitary wave solutions of the one-dimensional Gross-Pitaevskii equation, with time-varying scattering length and gain or loss, in both expulsive and regular parabolic confinement regimes. The consistency condition governing the soliton profiles is shown to map onto a linear Schrodinger eigenvalue problem, thereby enabling one to find analytically the effect of a wide variety of temporal variations in the control parameters, which are experimentally realizable. Corresponding to each solvable quantum mechanical system, one can identify a soliton configuration. These include soliton trains in close analogy to experimental observations of Strecker [Nature (London) 417, 150 (2002)], spatiotemporal dynamics, solitons undergoing rapid amplification, collapse and revival of condensates, and analytical expression of two-soliton bound states, to name a few.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available