4.1 Article Proceedings Paper

Comparative calcium binding of leucine-rich amelogenin peptide and full-length amelogenin

Journal

EUROPEAN JOURNAL OF ORAL SCIENCES
Volume 114, Issue -, Pages 320-326

Publisher

WILEY
DOI: 10.1111/j.1600-0722.2006.00313.x

Keywords

amelogenins; enamel mineralization; leucine-rich amelogenin peptide; thermodynamic values

Funding

  1. NIDCR NIH HHS [T32-DE-07306-09, P01-DE-009859] Funding Source: Medline

Ask authors/readers for more resources

Leucine-rich amelogenin peptide (LRAP) is an alternately spliced amelogenin. LRAP is known to bind to hydroxyapatite, and has been shown to signal mesenchymal cells to proliferate, but its function in enamel formation is unclear. The purpose of this study was to determine the calcium-binding properties and structure of recombinant human LRAP (rLRAP) compared with full-length amelogenin (rH174). rLRAP and rH174 were synthesized in Escherichia coli and purified by affinity chromatography and reverse-phase high-performance liquid chromatography. Calcium binding was measured by isothermal titration calorimetry (ITC) at pH 7.5 and 25 degrees C, and raw data were analyzed by ORIGIN7.0 software. The structure of rLRAP was analyzed by nuclear magnetic resonance (NMR) and circular dichroism (CD) in the absence or presence of Ca2+, pH 7.5 and 4.0, at 25 degrees C. Thermodynamic values showed that rLRAP had a Ca2+-binding affinity approximate to 6.4-times greater than rH174. NMR and CD data revealed that rLRAP was randomly coiled, and that this structure was not altered by Ca2+, which bound to rLRAP and rH174 via ionic interactions. Unlike r174 (beta-spiral), rLRAP had a random-coiled structure. The calcium binding and structural differences between rLRAP and rH174 suggest that these proteins have different functions in enamel biomineralization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available