4.3 Article

Retinal injury thresholds for blue wavelength lasers

Journal

HEALTH PHYSICS
Volume 90, Issue 5, Pages 477-484

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.HP.0000190115.83416.cb

Keywords

lasers; tissue, body; maximum permissible exposures; safety standards

Ask authors/readers for more resources

The interaction mechanism leading to laser-induced retinal alteration can be thermal or non-thermal, depending upon the wavelength of the laser radiation and the duration of the exposure. To investigate the effect of exposure duration on the interaction mechanism, retinal injury thresholds in the rhesus monkey were experimentally measured for exposure to laser radiation at wavelengths of 441.6, 457.9, 476.5, and 496.5 nm. Exposure durations were 0.1, 1, 5, 16, and 100 s; and 1/e retinal irradiance diameters were 50, 125, and 327 mu m. Tissue response was observed via ophthalmoscope I h and 48 h post exposure. Thermal and non-thermal damage thresholds were obtained depending upon the exposure duration. These threshold data are in agreement with data previously reported in the literature for 100-s duration exposures, but differences were noted for shorter exposures. The current study yielded an estimated injury threshold for 1-s duration, 327-mu m retinal irradiance diameter exposures at 441.6 nm, which is an order of magnitude higher than that previously reported. This study provides evidence that laser-induced retinal damage is primarily induced via thermal mechanisms for exposures shorter than 5 s in duration. Arguments are presented that support an amendment of the thermal hazard function, R(lambda).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available