4.4 Article

Spark anodising of titanium for biomedical applications

Journal

TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING
Volume 84, Issue 3, Pages 125-133

Publisher

MANEY PUBLISHING
DOI: 10.1179/174591906X123967

Keywords

titanium; spark anodising; bioactive coatings; hydroxyapatite

Ask authors/readers for more resources

Spark anodising of titanium enables fabrication of coatings with potential biocompatibility. In the present study, coatings were produced in electrolytes containing various amounts of CaHPO(4), Ca(H(2)PO(4))(2), Na(6)P(6)O(18) and Ca(CH(3)COO)(2). The findings disclose formation of coatings with compositions, morphologies and structures dependent upon the growth conditions. Calcium and phosphorus species are distributed throughout most of the coating thickness, with typical Ca/P atomic ratios of similar to 0.45 and (Ca+P)/Ti atomic ratios in the range 1.0-2.6 in the near surface regions. Calcium contents in particular reduced towards the metal. Dissolution behaviour in physiological solution was investigated by potentiodynamic polarisation measurements and immersion tests, the latter indicating titanium loss rates of similar to 0.3 mu g cm(-2) day(-1). Preliminary adhesion studies using primary human osteoblast cells revealed favourable cell responses to the anodic coatings. Further, the deposition of hydroxyapatite by cathodic deposition in selected electrolytes indicates scope for additional tailoring of coating surfaces. More limited studies of Ti-6Al-4V alloy demonstrated coating formation broadly similar to that on titanium, but with incorporation of aluminium and vanadium species and increased loss rates of titanium, similar to 4 mu g cm(-2) day(-1), in immersion tests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available