4.8 Article

Treatment of articular cartilage defects in horses with polymer-based cartilage tissue engineering grafts

Journal

BIOMATERIALS
Volume 27, Issue 14, Pages 2882-2889

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2006.01.008

Keywords

tissue engineering; autologous cartilage repair; cartilage regeneration; polyglactin/polydioxanone scaffold; horse model

Ask authors/readers for more resources

The objective of our study was to evaluate the integration of autologous cartilage tissue engineering transplants based on resorbable polyglactin/polydioxanone scaffolds into full-thickness cartilage defects of horses. Cartilage biopsies were taken from the non-load-bearing area of the lateral talus of the left tibiotarsal joint of eight healthy Haflinger horses. Tissue engineering cartilage transplants were generated by three-dimensional arrangement of autologous chondrocytes in biocompatible and resorbable polymer scaffolds. Full-thickness cartilage defects of 8 mm in diameter were created in the tubular bone condyle of the fetlock joint and cartilage grafts were fixed using an anchor system, while defects without grafting served as controls. After 6 and 12 months the repair tissue was evaluated histologically and showed formation of a cartilaginous tissue and good integration into the surrounding host tissue with firm bonding of the graft to the adjacent cartilage and the underlying subchondral bone. Biochemical analysis demonstrated that the content of glycosaminoglycans and hydroxyproline is comparable in repair tissue derived from treated and control defects. The use of three-dimensional autologous cartilage transplants based on resorbable polymer scaffolds ensures secure fixation, good integration of the graft into cartilage lesions, and is therefore suggested as a promising therapeutic option for the treatment of cartilage defects. (C) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available