4.1 Article

Fitness effects of Wolbachia and Spiroplasma in Drosophila melanogaster

Journal

GENETICA
Volume 127, Issue 1-3, Pages 207-215

Publisher

SPRINGER
DOI: 10.1007/s10709-005-3766-4

Keywords

fecundity; fitness; male-killing; Spiroplasma; symbiosis; Wolbachia

Ask authors/readers for more resources

Maternally inherited endosymbionts that manipulate the reproduction of their insect host are very common. Aside from the reproductive manipulation they produce, the fitness of these symbionts depends in part on the direct impact they have on the female host. Although this parameter has commonly been investigated for single infections, it has much more rarely been established in dual infections. We here establish the direct effect of infection with two different symbionts exhibiting different reproductive manipulation phenotypes, both alone and in combination, in the fruit fly Drosophila melanogaster. This species carries a cytoplasmic incompatibility inducing Wolbachia and a male-killing Spiroplasma, occurring as single or double (co-) infections in natural populations. We assessed direct fitness effects of these bacteria on their host, by comparing larval competitiveness and adult fecundity of uninfected, Wolbachia, Spiroplasma and Wolbachia-Spiroplasma co-infected females. We found no effect of infection status on the fitness of females for both estimates, that is, no evidence of any benefits or costs to either single or co-infection. This leads to the conclusion that both bacteria probably have other sources of benefits to persist in D. melanogaster populations, either by means of their reproductive manipulations (fitness compensation from male death in Spiroplasma infection and cytoplasmic incompatibility in Wolbachia infection) or by positive fitness interactions on other fitness components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available