4.4 Article

Encoding of three-dimensional surface slant in cat visual areas 17 and 18

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 95, Issue 5, Pages 2768-2786

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00955.2005

Keywords

-

Ask authors/readers for more resources

How are surface orientations of three-dimensional objects and scenes represented in the visual system? We have examined an idea that these surface orientations are encoded by neurons with a variety of tilts in their binocular receptive field (RF) structure. To examine whether neurons in the early visual areas are capable of encoding surface orientations, we have recorded from single neurons extracellularly in areas 17 and 18 of the cat using standard electrophysiological methods. Binocular RF structures are obtained using a binocular version of the reverse correlation technique. About 30% of binocularly responsive neurons have RFs with statistically significant tilts from the frontoparallel plane. The degree of tilts is sufficient for representing the range of surface slants found in typical visual environments. For a subset of neurons having significant RF tilts, the degrees of tilt are correlated with the preferred spatial frequency difference between the two eyes, indicating that a modified disparity energy model can account for the selectivity, at least partially. However, not all cases could be explained by this model, suggesting that multiple mechanisms may be responsible. Therefore an alternative hypothesis is also examined, where the tilt is generated by pooling of multiple disparity detectors whose preferred disparities progressively shift over space. Although there is evidence for extensive spatial pooling, this hypothesis was not satisfactory either, in that the neurons with extensive pooling tended to prefer an untilted surface. Our results suggest that encoding of surface orientations may begin with the binocular neurons in the early visual cortex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available