4.7 Article

Rapid determination of reduced and oxidized glutathione levels using a new thiol-masking reagent and the enzymatic recycling method: application to the rat liver and bile samples

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 385, Issue 1, Pages 105-113

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-006-0375-8

Keywords

glutathione; liver; bile; tat; rnzyme recycling reaction; ischemia

Funding

  1. NIGMS NIH HHS [R01 GM069869-01A2, R01 GM069869] Funding Source: Medline

Ask authors/readers for more resources

A microtiter plate assay for quantitation of reduced (GSH) and oxidized (GSSG) glutathione in the rat liver tissue and bile is described. The assay is based on the established enzymatic recycling method and a new thiol-masking reagent, 1-methyl-4-vinyl-pyridinium trifluoromethane sulfonate (M4VP). Samples were first processed by homogenization with (liver) or addition of (bile) sulfosalicylic acid. The total glutathione and GSSG were then determined before and after rapid (>= 2 min) and efficient (100%) masking of the GSH content of the samples with M4VP followed by the enzymatic recycling assay. The percentages of error and coefficient of variation of the assay were within the accepted guidelines, indicating the accuracy and precision of the assay in the range of 6.25-100 pmol GSH per microplate well and 2.17-140 pmol GSSG per well, with lower limit of quantitation of 6.25 and 2.17 pmol per well for GSH and GSSG, respectively. Furthermore, the recoveries of added GSH or GSSG from the liver and bile samples were accurate and precise. The assay was applied to measurement of GSH, GSSG, and GSH:GSSG ratio in the liver and serially collected bile samples in sham-operated and ischemic rat livers, demonstrating a depletion of glutathione and a decrease in the GSH:GSSG ratio as a result of ischemia. The developed assay is rapid, sensitive, accurate, and precise and is suitable for studies of the redox status of liver under physiologic and pathophysiologic conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available