4.5 Review

Endocytosis at the blood-brain barrier: From basic understanding to drug delivery strategies

Journal

JOURNAL OF DRUG TARGETING
Volume 14, Issue 4, Pages 191-214

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10611860600650086

Keywords

blood-brain barrier; endocytosis and transcytosis; transferrin; leptin; ghrelin; insulin

Ask authors/readers for more resources

The blood-brain barrier (BBB) protects the central nervous system (CNS) from potentially harmful xenobiotics and endogenous molecules. Anatomically, it comprises the brain microvasculature whose functionality is nevertheless influenced by associated astrocyte, pericyte and neuronal cells. The highly restrictive paracellular pathway within brain microvasculature restricts significant CNS penetration to only those drugs whose physicochemical properties afford ready penetration into hydrophobic cell membranes or are capable of exploiting endogenous active transport processes such as solute carriers or endocytosis pathways. Endocytosis at the BBB is an essential pathway by which the brain obtains its nutrients and affords communication with the periphery. The development of strategies to exploit these endocytic pathways for the purposes of drug delivery to the CNS is still an immature field although some impressive results have been documented with the targeting of particular receptors. This current article initially provides an overview of general endocytosis processes and pathways showing evidence of their functional existence within the BBB. Subsequent sections provide, in an entity-specific manner, comprehensive reviews on BBB transport investigations of endocytosis involving: transferrin and the targeting of the transferrin receptor; hormones; cytokines; cell penetrating peptides; microorganisms and toxins, and nanoparticles aimed at more effectively delivering drugs to the CNS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available