4.5 Article

Parathyroid hormone increases β-catenin levels through Smad3 in mouse osteoblastic cells

Journal

ENDOCRINOLOGY
Volume 147, Issue 5, Pages 2583-2590

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2005-1627

Keywords

-

Ask authors/readers for more resources

PTH, via the PTH/PTH-related protein receptor type 1 that couples to both protein kinase A (PKA) and protein kinase C (PKC) pathways, and the canonical Wnt-beta-catenin signaling pathway play important roles in bone formation. In the present study we have examined the interaction between the PTH and Wnt signaling pathways in mouse osteoblastic MC3T3-E1 cells. PTH dose- and time-dependently increased the concentrations of beta-catenin. The PKA activator, forskolin, and the PKC activator, phorbol 12-myristate-13-acetate, as well as the PTH analog, [NIe(8,18),Tyr(34)] human PTH-(3-34) amide, all increased beta-catenin levels. Both H-89, a specific PKA inhibitor, and PKC inhibitors, staurosporine and calphostin C, antagonized PTH stimulation of beta-catenin levels. TGF-beta as well as transfection of the TGF-beta-signaling molecule, Smad3, enhanced beta-catenin levels, and this was antagonized by transfection of a dominant-negative Smad3. The transcriptional activity of transfected dominant-active beta-catenin was enhanced by PTH, an effect that was antagonized by cotransfection of a dominant-negative Smad3. PTH as well as LiCl2, which mimics the effects of the Wnt-beta-catenin pathway, rescued the dexamethasone- and etoposide-induced apoptosis of osteoblastic cells. In conclusion, the data demonstrate that PTH stimulates osteoblast beta-catenin levels via Smad3, and that both PKA and PKC pathways are involved. The canonical Wnt-beta-catenin pathway is likely to be involved in the antiapoptotic actions of PTH by acting through Smad3 in osteoblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available