4.6 Article

The autoimmune diabetes locus Idd9 regulates development of type 1 diabetes by affecting the homing of islet-specific T cells

Journal

JOURNAL OF IMMUNOLOGY
Volume 176, Issue 9, Pages 5455-5462

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.176.9.5455

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI 44880] Funding Source: Medline

Ask authors/readers for more resources

Several genetic insulin-dependent diabetes (Idd) intervals that confer resistance to autoimmune diabetes have been identified in mice and humans, but the mechanisms by which they protect against development of diabetes have not been elucidated. To determine the effect of Idd9 on the function of islet-specific T cells, we established novel BDC-Idd9 mice that harbor BDC2.5 TCR transgenic T cells containing the Idd9 of diabetes-resistant B10 mice. We show that the development and functional responses of islet-specific T cells from BDC-Idd9 mice are not defective compared with those from BDC mice, which contain the Idd9 of diabetes-susceptible NOD mice. Upon transfer, BDC T cells rapidly induced severe insulitis and diabetes in NOD.scid mice, whereas those from BDC-Idd9 mice mediated a milder insulitis and induced diabetes with a significantly delayed onset. BDC and BDC-Idd9 T cells expanded comparably in recipient mice. However, BDC-Idd9 T cells accumulated in splenic periarteriolar lymphatic sheaths, whereas BDC T cells were mainly found in pancreatic lymph nodes and pancreata of recipients, indicating that the transferred T cells differed in their homing. We provide evidence that the migration pattern of transferred BDC and BDC-Idd9 T cells at least partly depends on their differential chemotaxis toward the CCR7 ligand CCL19. Taken together, our data show that the Idd9 locus regulates development of type I diabetes by affecting the homing of islet-specific T cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available