4.5 Article

Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats:: Toxicity is not dependent upon particle size and surface area

Journal

TOXICOLOGICAL SCIENCES
Volume 91, Issue 1, Pages 227-236

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfj140

Keywords

titanium dioxide particles; pulmonary toxicity; nanoscale TiO2 rods and dots, particle size; particle surface area

Categories

Ask authors/readers for more resources

Pulmonary toxicology studies in rats demonstrate that nanoparticles administered to the lung are more toxic than larger, fine-sized particles of similar chemistry at identical mass concentrations. The aim of this study was to evaluate the acute lung toxicity in rats of intratracheally instilled pigment-grade TiO2 particles (rutile-type particle size = similar to 300 nm) versus nanoscale TiO2 rods (anatase = 200 nm x 35 nm) or nanoscale TiO2 dots (anatase = similar to 10 nm) compared with a positive control particle type, quartz. Groups of rats were instilled with doses of 1 or 5 mg/kg of the various particle types in phosphate-buffered saline (PBS). Subsequently, the lungs of PBS- and particle-exposed rats were assessed using bronchoalveolar lavage fluid biomarkers, cell proliferation methods, and by the histopathological evaluation of lung tissue at 24 h, 1 week, 1 month, and 3 months postinstillation exposure. Exposures to nanoscale TiO2 rods or nanoscale TiO2 dots produced transient inflammatory and cell injury effects at 24 h postexposure (pe) and were not different from the pulmonary effects of larger sized TiO2 particle exposures. In contrast, pulmonary exposures to quartz particles in rats produced a dose-dependent lung inflammatory response characterized by neutrophils and foamy lipid-containing alveolar macrophage accumulation as well as evidence of early lung tissue thickening consistent with the development of pulmonary fibrosis. The results described herein provide the first example of nanoscale particle types which are not more cytotoxic or inflammogenic to the lung compared to larger sized particles of similar composition. Furthermore, these findings run counter to the postulation that surface area is a major factor associated with the pulmonary toxicity of nanoscale particle types.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available