4.5 Article

An efficient numerical scheme for the simulation of parallel-plate active magnetic regenerators

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrefrig.2015.06.007

Keywords

Regenerator; Modelling; Simulation; Magnetic refrigerator; Finite differences

Funding

  1. Spanish Ministry of Education, Culture and Sport (Ministerio de Educacion, Cultura y Deporte) [AP2010-2160]

Ask authors/readers for more resources

A one-dimensional model of a parallel-plate active magnetic regenerator (AMR) is presented in this work. The model is based on an efficient numerical scheme which has been developed after analysing the heat transfer mechanisms in the regenerator bed. The new finite difference scheme optimally combines explicit and implicit techniques in order to solve the one-dimensional conjugate heat transfer problem in an accurate and fast manner while ensuring energy conservation. The present model has been thoroughly validated against passive regenerator cases with an analytical solution. Compared to the fully implicit scheme, the proposed scheme achieves more accurate results, prevents numerical errors and requires less computational effort. In AMR simulations the new scheme can reduce the computational time by 89%. (C) 2015 Elsevier Ltd and IIR. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available