4.7 Article

Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit

Journal

TREE PHYSIOLOGY
Volume 26, Issue 5, Pages 575-584

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/treephys/26.5.575

Keywords

cold acclimation; dormancy; drought; PCA60; stress response; water deficit

Categories

Ask authors/readers for more resources

Dehydrins are one of several proteins that have been specifically associated with qualitative and quantitative changes in cold hardiness. Recent evidence indicates that the regulation of dehydrin genes by low nonfreezing temperature (LT) and short photoperiod (SD) can be complex and deserves more detailed analysis to better understand the role of specific dehydrin genes and proteins in the response of woody plants to environmental stress. We have identified a new peach (Prunus persica (L.) Batsch) dehydrin gene (PpDhn2) and examined the responses of this gene and a previously identified dehydrin (PpDhn1) to SD, LT and water deficit. PpDhn2 was strongly induced by water deficit but not by LT or SD. It was also present in the mature embryos of peach. In contrast, PhDhn1 was induced by water deficit and LT but not by SD. We conducted an in silico analysis of the promoters of these genes and found that the promoter region of PpDhn1 contained two dehydration-responsive-elements (DRE)/C-repeats that are responsive to LT and several abscisic acid (ABA)-response elements (ABREs). In contrast, the promoter region of PpDhn2 contained no LT elements but contained several ABREs and an MYCERD1 motif. Both promoter analyses were consistent with the observed expression patterns. The discrepancy between field-collected samples and growth-chamber experiments in the expression of PpDhn1 in response to SD suggests that SD-induced expression of dehydrin genes is complex and may be the result of several interacting factors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available