3.8 Article Proceedings Paper

Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent

Publisher

JAPAN SOC APPLIED PHYSICS
DOI: 10.1143/JJAP.45.4712

Keywords

microbubble; Bjerknes force; acoustic radiation force; manipulation; drug delivery system; seed bubble

Ask authors/readers for more resources

Microobject manipulation using ultrasonic waves is expected to play important roles in constructing future drug or gene delivery systems. The acoustic radiation force, which is applied to microobjects, traps the objects at the desired position. A microjet, which is produced by bubble explosion under high-intensity ultrasonic waves, creates microholes through the cell membrane (sonoporation), which is considered as a sophisticated method of improving the doses of drugs or genes injected into a tissue. Aiming at increasing the trapping force in micro bubble manipulation using ultrasonic waves, we have proposed a novel method based on the self-organization of microbubbles.. This method uses seed bubbles in order to trap the target bubbles. In this study, the proposed method is applied to yeast cell trapping using ultrasonic waves. An ultrasonic wave contrast agent (Levovist; Shering A.G., Germany) is used as a seed bubble. It is shown that the number of trapped yeast cells depends on the preparation of the yeast cells. In order to evaluate the result, two additional experiments are carried out by changing the internal gas of the seed bubbles and by using bubbles with a polymer shell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available