4.8 Article

The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases

Journal

CELL
Volume 125, Issue 3, Pages 453-466

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2006.02.048

Keywords

-

Ask authors/readers for more resources

Postnatal cardiac myocytes respond to diverse signals by hypertrophic growth and activation of a fetal gene program. In an effort to discover regulators of cardiac hypertrophy, we performed a eukaryotic expression screen for activators of the atrial natriuretic factor (ANF) gene, a cardiac-specific marker of hypertrophic signaling. We discovered that a family of transcriptional coactivators, called CAMTAs, promotes cardiomyocyte hypertrophy and activates the ANF gene, at least in part, by associating with the cardiac homeodomain protein Nkx2-5. The transcriptional activity of CAMTAs is governed by association with class II histone deacetylases (HDACs), which negatively regulate cardiac growth. Mice homozygous for a mutation in a CAMTA gene are defective in cardiac growth in response to pressure overload and neurohumoral signaling, whereas mice lacking HDAC5, a class II HDAC, are sensitized to the prohypertrophic actions of CAMTA. These findings reveal a transcriptional regulatory mechanism that modulates cardiac growth and gene expression by linking hypertrophic signals to the cardiac genome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available