4.6 Article

Reactive oxygen species induced by shear stress mediate cell death in Bacillus subtilis

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 94, Issue 1, Pages 118-127

Publisher

WILEY
DOI: 10.1002/bit.20835

Keywords

shear rate; apoptosis-like cell death; (CLP)-L-3; DNA fragmentation; siROS; NADH oxidase

Ask authors/readers for more resources

Exposure of Bacillus subtilis to a shear rate of 1,482/s leads to a rapid loss of cell viability after 10 h of growth. Biochemical and molecular evidences provided below strongly suggest that cell death under high shear results from an apoptosis-like process similar to that described in eukaryotes, with activation of a caspase-3-like protease ((CLP)-L-3) followed by DNA fragmentation. Shear stress leads to an increase in specific intracellular reactive oxygen species (siROS), possibly through activation of NADH oxidase (NOX). The formation of siROS precedes the activation of (CLP)-L-3 and DNA fragmentation, thus establishing siROS as the molecular link between shear stress and apoptosis-like cell death. A model is proposed in which NOX is viewed as being strategically placed on the plasma membrane of B. subtilis that senses and converts a mechanical force arising from shear stress into a chemical signal leading to activation of (CLP)-L-3, DNA fragmentation, and thus, apoptosis-like cell death. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available