4.8 Article

Wringing out DNA

Journal

PHYSICAL REVIEW LETTERS
Volume 96, Issue 17, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.178102

Keywords

-

Ask authors/readers for more resources

The chiral nature of DNA plays a crucial role in cellular processes. Here we use magnetic tweezers to explore one of the signatures of this chirality, the coupling between stretch and twist deformations. We show that the extension of a stretched DNA molecule increases linearly by 0.42 nm per excess turn applied to the double helix. This result contradicts the intuition that DNA should lengthen as it is unwound and get shorter with overwinding. We then present numerical results of energy minimizations of torsionally restrained DNA that display a behavior similar to the experimental data and shed light on the molecular details of this surprising effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available