4.6 Article

The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 18, Pages 12436-12444

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M511192200

Keywords

-

Ask authors/readers for more resources

To perform effectively as a molecular chaperone, DnaK (Hsp70) necessitates the assistance of its DnaJ (Hsp40) co-chaperone partner, which efficiently stimulates its intrinsically weak ATPase activity and facilitates its interaction with polypeptide substrates. In this study, we address the function of the conserved glycine- and phenyalanine-rich (G/F-rich) region of the Escherichia coli DnaJ in the DnaK chaperone cycle. We show that the G/F-rich region is critical for DnaJ co-chaperone functions in vivo and that despite a significant degree of sequence conservation among the G/F-rich regions of Hsp40 homologs from bacteria, yeast, or humans, functional complementation in the context of the E. coli DnaJ is limited. Furthermore, we found that the deletion of the whole G/F-rich region is mirrored by mutations in the conserved Asp-Ile/Val-Phe (DIF) motif contained in this region. Further genetic and biochemical analyses revealed that this amino acid triplet plays a critical role in regulation of the DnaK chaperone cycle, possibly by modulating a crucial step subsequent to DnaK-mediated ATP hydrolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available