4.6 Article

Roles of the textural and surface chemical properties of activated carbon in the adsorption of acid blue dye

Journal

LANGMUIR
Volume 22, Issue 10, Pages 4574-4582

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la051711j

Keywords

-

Ask authors/readers for more resources

This study has demonstrated the use of empirical modeling in resolving the effects of individual carbon properties on acid blue dye adsorption. Acid blue dye adsorption tests were conducted on activated carbons prepared from bagasse by physical (CO2) and chemical (ZnCl2, MgCl2 and CaCl2) techniques. Empirical models based on the carbon textural (surface area and pore size) properties and the surface chemistry inferred from heteroatom (C,H, N, and S) concentration and carbon surface pH were used to resolve the effects of individual carbon properties on acid blue dye adsorption. This form of analysis was conducted to optimize carbon preparation properties, forming the foundation for tailor-making adsorbents from bagasse suitable for acid dye adsorption. A series of statistical analyses (partial F-tests to establish the parameter significance) measured variants including the mean square error, r(2) and adjusted r(2), normality, and randomness of residuals, and formed the basis for testing the adequacy of these models. The empirical models suggest that a combination of suitable pore structure and distinct basic surface chemistry generated by sulfur- and nitrogen-based groups, which were also elucidated by Fourier transform infrared spectroscopy, is necessary to promote acid dye adsorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available