4.7 Article Proceedings Paper

Comparison of flow structures in spacer-filled flat and annular channels

Journal

DESALINATION
Volume 191, Issue 1-3, Pages 236-244

Publisher

ELSEVIER
DOI: 10.1016/j.desal.2006.03.003

Keywords

membrane spacers; CFD; flat channel; annular channel

Ask authors/readers for more resources

Spacers are designed to create directional changes in the flow through membrane modules. Such secondary flow structures reduce concentration polarization and membrane fouling. Obviously, type of the spacer used in membrane modules strongly influences the resulting flow and therefore performance of the module. In this work, we have modeled detailed fluid dynamics of spacer filled channels by using the 'unit cell' approach. The validated computational fluid dynamics (CFD) model was used to evaluate performance of certain spacer shapes and compare the resulting fluid dynamics in flat and curved channels. The simulations show that fluid flow behavior in a spacer-filled flat and a spiral channel was not significantly different. This means that pressure drops and mass transfer coefficients measured in flat channels may provide adequate guidelines, which would also be valid for spiral-wound modules. The results presented in this work will have significant implications for identifying improved spacers with higher propensities to reduce fouling in membrane modules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available