4.5 Article

Thermodynamics of competitive surface adsorption on DNA microarrays

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 18, Issue 18, Pages S491-S523

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/18/18/S02

Keywords

-

Ask authors/readers for more resources

Gene microarrays provide a powerful functional genomics technology which permits the expression profiling of tens of thousands of genes in parallel. The basic idea of their functioning is based on the sequence specificity of probe-target interactions combined with fluorescence detection. In reality, this straightforward principle is opposed by the complexity of the experimental system due to imperfections of chip fabrication and RNA preparation, due to the non-linearity of the probe response and especially due to competitive interactions which are inherently connected with the high throughput character of the method. We theoretically analysed aspects of the hybridization of DNA oligonucleotide probes with a complex multicomponent mixture of RNA fragments, such as the effect of different interactions between nucleotide strands competing with the formation of specific duplexes, electrostatic and entropic blocking, the fragmentation of the RNA, the incomplete synthesis of the probes and 'zipping' effects in the oligonucleotide duplexes. The effective hybridization affinities of microarray probes are considerably smaller than those for bulk hybridization owing to the effects discussed, but they correlate well with the bulk data on a relative scale. In general, the hybridization isotherms of microarray probes are shown to deviate from a Langmuir-type behaviour. Nevertheless isotherms of the Langmuir or Sips type are predicted to provide a relatively simple description of the non-linear, probe-specific concentration dependence of the signal intensity of microarray probes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available