4.7 Article

Alternate structural conformations of Streptococcus pneumoniae hyaluronan lyase:: Insights into enzyme flexibility and underlying molecular mechanism of action

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 358, Issue 4, Pages 1165-1178

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2006.02.066

Keywords

bacteria; chondroitin; glycan degradation; molecular mechanism; molecular dynamics

Ask authors/readers for more resources

Streptococcus pneumoniae hyaluronan lyase is a surface enzyme of this Gram-positive bacterium. The enzyme degrades several biologically important, information-rich linear polymeric glycans: hyaluronan, unsulfated chondroitin, and some chondroitin sulfates. This degradation facilitates spreading of bacteria throughout the host tissues and presumably provides energy and a carbon source for pneumococcal cells. Its beta-elimination catalytic mechanism is an acid/base process termed proton acceptance and donation leading to cleavage of beta-1,4 linkages of the substrates. The degradation of hyaluronan occurs in two stages, initial endolytic cuts are followed by processive exolytic cleavage of one disaccharide at a time. In contrast, the degradation of chondroitins is purely endolytic. Structural studies together with flexibility analyses of two streptococcal enzymes, from S. pneumoniae and Streptococcus agalactiae, allowed for insights into this enzyme's molecular mechanism. Here, two new X-ray crystal structures of the pneumococcal enzyme in novel conformations are reported. These new conformations, complemented by molecular dynamics simulation results, directly confirm the predicted domain motions presumed to facilitate the processive degradative process. One of these new structures resembles the S. agalactiae enzyme conformation, and provides evidence of a uniform mechanistic/dynamic behavior of this protein across different bacteria. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available