4.8 Article

Cyclooxygenase-2-dependent regulation of E-cadherin:: Prostaglandin E2 induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer

Journal

CANCER RESEARCH
Volume 66, Issue 10, Pages 5338-5345

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-3635

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA58187, P50 CA90388] Funding Source: Medline

Ask authors/readers for more resources

Elevated tumor cyclooxygenase-2 (COX-2) expression is associated with tumor invasion, metastasis, and poor prognosis in non-small cell lung cancer (NSCLC). Here, we report that COX-2-dependent pathways contribute to the modulation of E-cadherin expression in NSCLC. First, whereas genetically modified COX-2-sense (COX-2-S) NSCLC cells expressed low E-cadherin and showed diminished capacity for cellular aggregation, genetic or pharmacologic inhibition of tumor COX-2 led to increased E-cadherin expression and resulted in augmented homotypic cellular aggregation among NSCLC cells in vitro. An inverse relationship between COX-2 and E-cadherin was shown in situ by double immunohistochemical staining of human lung adenocarcinoma tissue sections. Second, treatment of NSCLC cells with exogenous prostaglandin E-2 (PGE(2)) significantly decreased the expression of E-cadherin, whereas treatment of COX-2-S cells with celecoxib (1 mu mol/L) led to increased E-cadherin expression. Third, the transcriptional suppressors of E-cadherin, ZEB1 and Snail, were up-regulated in COX-2-S cells or PGE(2)-treated NSCLC cells but decreased in COX-2-antisense cells. PGE(2) exposure led to enhanced ZEB1 and Snail binding at the chromatin level as determined by chromatin immunoprecipitation assays. Small interfering RNA-mediated knockdown of ZEB1 or Snail interrupted the capacity of PGE(2) to downregulate E-cadherin. Fourth, an inverse relationship between E-cadherin and ZEB1 and a direct relationship between COX-2 and ZEB1 were shown by immunohistochemical staining of human lung adenocarcinoma tissue sections. These findings indicate that PGE(2), in autocrine or paracrine fashion, modulates transcriptional repressors of E-cadherin and thereby regulates COX-2-dependent E-cadherin expression in NSCLC. Thus, blocking PGE(2) production or activity may contribute to both prevention and treatment of NSCLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available