4.5 Article

Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle

Journal

OPTICS COMMUNICATIONS
Volume 261, Issue 2, Pages 368-375

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.optcom.2005.12.009

Keywords

fluorescence; single molecule; nanoparticle; quenching

Categories

Ask authors/readers for more resources

We study the spontaneous emission of a single emitter close to a metallic nanoparticle, with the aim to clarify the distance dependence of the radiative and non-radiative decay rates. We derive analytical formulas based on a dipole-dipole model, and show that the nonradiative decay rate follows a R-6 dependence at short distance, where R is the distance between the emitter and the center of the nanoparticle, as in Forster's energy transfer. The distance dependence of the radiative decay rate is more subtle. It is chiefly dominated by a R-3 dependence, a R-6 dependence being visible at plasmon resonance. The latter is a consequence of radiative damping in the effective dipole polarizability of the nanoparticle. The different distance behavior of the radiative and non-radiative decay rates implies that the apparent quantum yield always vanishes at short distance. Moreover, non-radiative decay is strongly enhanced when the emitter radiates at the plasmon-resonance frequency of the nanoparticle. (C) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available